Grant Title
Dr. Dolittle Project: A Framework for Classification and Understanding of Animal Vocalizations
Document Type
Article
Publication Date
7-2006
Source Publication
Journal of the Acoustical Society of America
Source ISSN
0001-4966
Abstract
A new feature extraction model, generalized perceptual linear prediction (gPLP), is developed to calculate a set of perceptually relevant features for digital signal analysis of animalvocalizations. The gPLP model is a generalized adaptation of the perceptual linear prediction model, popular in human speech processing, which incorporates perceptual information such as frequency warping and equal loudness normalization into the feature extraction process. Since such perceptual information is available for a number of animal species, this new approach integrates that information into a generalized model to extract perceptually relevant features for a particular species. To illustrate, qualitative and quantitative comparisons are made between the species-specific model, generalized perceptual linear prediction (gPLP), and the original PLP model using a set of vocalizations collected from captive African elephants (Loxodonta africana) and wild beluga whales (Delphinapterus leucas). The models that incorporate perceptional information outperform the original human-based models in both visualization and classification tasks.
Recommended Citation
Clemins, Patrick J. and Johnson, Michael T., "Generalized Perceptual Linear Prediction (gPLP) Features for Animal Vocalization Analysis" (2006). Dr. Dolittle Project: A Framework for Classification and Understanding of Animal Vocalizations. 7.
https://epublications.marquette.edu/data_drdolittle/7
Document Rights and Citation of Original
Published version. The Journal of the Acoustical Society of America, Vol. 120, No. 1 (July 2006): 527-534. DOI. © 2006 Acoustical Society of America. Used with permission.