Grant Title

Dr. Dolittle Project: A Framework for Classification and Understanding of Animal Vocalizations

Document Type

Article

Publication Date

7-2006

Source Publication

Journal of the Acoustical Society of America

Source ISSN

0001-4966

Abstract

A new feature extraction model, generalized perceptual linear prediction (gPLP), is developed to calculate a set of perceptually relevant features for digital signal analysis of animalvocalizations. The gPLP model is a generalized adaptation of the perceptual linear prediction model, popular in human speech processing, which incorporates perceptual information such as frequency warping and equal loudness normalization into the feature extraction process. Since such perceptual information is available for a number of animal species, this new approach integrates that information into a generalized model to extract perceptually relevant features for a particular species. To illustrate, qualitative and quantitative comparisons are made between the species-specific model, generalized perceptual linear prediction (gPLP), and the original PLP model using a set of vocalizations collected from captive African elephants (Loxodonta africana) and wild beluga whales (Delphinapterus leucas). The models that incorporate perceptional information outperform the original human-based models in both visualization and classification tasks.

Document Rights and Citation of Original

Published version. The Journal of the Acoustical Society of America, Vol. 120, No. 1 (July 2006): 527-534. DOI. © 2006 Acoustical Society of America. Used with permission.

Share

COinS