Document Type
Article
Language
eng
Publication Date
8-1-2016
Publisher
Elsevier
Source Publication
Materials Science and Engineering: C
Source ISSN
0928-4931
Original Item ID
DOI: 10.1016/j.msec.2016.04.039
Abstract
Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe3O4) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan.
Recommended Citation
Heidari, Fatemeh; Razavi, Mehdi; Bahrololoom, Mohammad E.; Bazargan-Lari, Reza; Vashaee, Daryoosh; Kotturi, Hari; and Tayebi, Lobat, "Mechanical Properties of Natural Chitosan/Hydroxyapatite/Magnetite Nanocomposites for Tissue Engineering Applications" (2016). School of Dentistry Faculty Research and Publications. 188.
https://epublications.marquette.edu/dentistry_fac/188
Comments
Accepted version. Materials Science and Engineering: C, Vol. 65 (August 1, 2016): 338-344. DOI. © 2016 Elsevier B.V. Used with permission.