Document Type
Article
Language
eng
Publication Date
12-1-2016
Publisher
Elsevier
Source Publication
Materials Science and Engineering: C
Source ISSN
0928-4931
Original Item ID
DOI: 10.1016/j.msec.2016.07.011
Abstract
Bone tissue engineering is sought to apply strategies for bone defects healing without limitations and short-comings of using either bone autografts or allografts and xenografts. The aim of this study was to fabricate a thin layer poly(lactic-co-glycolic) acid (PLGA) coated beta-tricalcium phosphate (β-TCP) scaffold with sustained release of vascular endothelial growth factor (VEGF). PLGA coating increased compressive strength of the β-TCP scaffolds significantly. For in vitro evaluations, canine mesenchymal stem cells (cMSCs) and canine endothelial progenitor cells (cEPCs) were isolated and characterized. Cell proliferation and attachment were demonstrated and the rate of cells proliferation on the VEGF released scaffold was significantly more than compared to the scaffolds with no VEGF loading. A significant increase in expression of COL1 and RUNX2 was indicated in the scaffolds loaded with VEGF and MSCs compared to the other groups. Consequently, PLGA coated β-TCP scaffold with sustained and localized release of VEGF showed favourable results for bone regeneration in vitro, and this scaffold has the potential to use as a drug delivery device in the future.
Recommended Citation
Khojasteh, Arash; Fahimipour, Farahnaz; Eslaminejad, Mohamadreza Baghaban; Jafarian, Mohammad; Jahangir, Shahrbanoo; Bastami, Farshid; Tahriri, Mohammadreza; Karkhaneh, Akbar; and Tayebi, Lobat, "Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering" (2016). School of Dentistry Faculty Research and Publications. 194.
https://epublications.marquette.edu/dentistry_fac/194
Comments
NOTICE: this is the author’s version of a work that was accepted for publication in Materials Science and Engineering: C. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Materials Science and Engineering: C, Vol. 69 (December 1, 2016): 780-788. DOI. © 2016 Elsevier B.V. Used with permission.