Quantum Monte Carlo calculations on positronium compounds

Nan Jiang, Marquette University

Abstract

The stability of compounds containing one or more positrons in addition to electrons and nuclei has been the focus of extensive scientific investigations. Interest in these compounds stems from the important role they play in the process of positron annihilation, which has become a useful technique in material science studies. Knowledge of these compounds comes mostly from calculations which are presently less difficult than laboratory experiments. Owing to the small binding energies of these compounds, quantum chemistry methods beyond the molecular orbital approximation must be used. Among them, the quantum Monte Carlo (QMC) method is most appealing because it is easy to implement, gives exact results within the fixed nodes approximation, and makes good use of existing approximate wavefunctions. Applying QMC to small systems like PsH for binding energy calculation is straightforward. To apply it to systems with heavier atoms, to systems for which the center-of-mass motion needs to be separated, and to calculate annihilation rates, special techniques must be developed. In this project a detailed study and several advancements to the QMC method are carried out. Positronium compounds PsH, Ps2 , PsO, and Ps2 O are studied with algorithms we developed. Results for PsH and Ps2 agree with the best accepted to date. Results for PsO confirm the stability of this compound, and are in fair agreement with an earlier calculation. Results for Ps2 O establish the stability of this compound and give an approximate annihilation rate for the first time. Discussions will include an introduction to QMC methods, an in-depth discussion on the QMC formalism, presentation of new algorithms developed in this study, and procedures and results of QMC calculations on the above mentioned positronium compounds.

This paper has been withdrawn.