Document Type
Conference Proceeding
Language
eng
Format of Original
4 p.
Publication Date
5-17-2004
Publisher
Institute of Electrical and Electronics Engineers
Source Publication
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004 (ICASSP '04)
Source ISSN
1520-6149
Original Item ID
doi: 10.1109/ICASSP.2004.1326040
Abstract
A novel method for speech recognition is presented, utilizing nonlinear/chaotic signal processing techniques to extract time-domain based, reconstructed phase space features. This work examines the incorporation of trajectory information into this model as well as the combination of both MFCC and RPS feature sets into one joint feature vector. The results demonstrate that integration of trajectory information increases the recognition accuracy of the typical RPS feature set, and when MFCC and RPS feature sets are combined, improvement is made over the baseline. This result suggests that the features extracted using these nonlinear techniques contain different discriminatory information than the features extracted from linear approaches alone.
Recommended Citation
Lindgren, Andrew C.; Johnson, Michael T.; and Povinelli, Richard J., "Joint Frequency Domain and Reconstructed Phase Space Features for Speech Recognition" (2004). Electrical and Computer Engineering Faculty Research and Publications. 127.
https://epublications.marquette.edu/electric_fac/127
Comments
Accepted version. Published as part of the proceedings of the conference, IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, Vol. 1: 533-536. DOI. © 2004 The Institute of Electrical and Electronics Engineers. Used with permission.