A SOT-dense Path of Chaotic Operators with Same Hypercyclic Vectors
Document Type
Article
Language
eng
Format of Original
18 p.
Publication Date
2011
Publisher
Theta Foundation
Source Publication
Journal of Operator Theory
Source ISSN
0379-4024
Abstract
Recently many authors have obtained interesting results on the existence of a dense Gd set of common hypercyclic vectors for a path of operators. We show that on a separable infinite dimensional Hilbert space, there is a path of chaotic operators that is dense in the operator algebra with the strong operator topology, and yet each operator along the path has the exact same dense Gd set of hypercyclic vectors. As a corollary, the operators having that particular set of hypercyclic vectors form a connected subset of the operator algebra with the strong operator topology.
Recommended Citation
Chan, Kit C. and Sanders, Rebecca, "A SOT-dense Path of Chaotic Operators with Same Hypercyclic Vectors" (2011). Mathematics, Statistics and Computer Science Faculty Research and Publications. 37.
https://epublications.marquette.edu/mscs_fac/37
Comments
Journal of Operator Theory, Vol. 66, No. 1 (2011): 107–124. Permalink. © 2011 Theta Foundation. Used with permission.