Document Type




Format of Original

11 p.

Publication Date



American Physiological Society

Source Publication

American Journal of Physiology: Lung Cellular and Molecular Physiology

Source ISSN


Original Item ID

doi: 10.1152/ajplung.00448.2006


The objective was to determine the impact of intact normoxic and hyperoxia-exposed (95% O(2) for 48 h) bovine pulmonary arterial endothelial cells in culture on the redox status of the coenzyme Q(10) homolog coenzyme Q(1) (CoQ(1)). When CoQ(1) (50 microM) was incubated with the cells for 30 min, its concentration in the medium decreased over time, reaching a lower level for normoxic than hyperoxia-exposed cells. The decreases in CoQ(1) concentration were associated with generation of CoQ(1) hydroquinone (CoQ(1)H(2)), wherein 3.4 times more CoQ(1)H(2) was produced in the normoxic than hyperoxia-exposed cell medium (8.2 +/- 0.3 and 2.4 +/- 0.4 microM, means +/- SE, respectively) after 30 min. The maximum CoQ(1) reduction rate for the hyperoxia-exposed cells, measured using the cell membrane-impermeant redox indicator potassium ferricyanide, was about one-half that of normoxic cells (11.4 and 24.1 nmol x min(-1) x mg(-1) cell protein, respectively). The mitochondrial electron transport complex I inhibitor rotenone decreased the CoQ(1) reduction rate by 85% in the normoxic cells and 44% in the hyperoxia-exposed cells. There was little or no inhibitory effect of NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors on CoQ(1) reduction. Intact cell oxygen consumption rates and complex I activities in mitochondria-enriched fractions were also lower for hyperoxia-exposed than normoxic cells. The implication is that intact pulmonary endothelial cells influence the redox status of CoQ(1) via complex I-mediated reduction to CoQ(1)H(2), which appears in the extracellular medium, and that the hyperoxic exposure decreases the overall CoQ(1) reduction capacity via a depression in complex I activity.


Accepted version. American Journal of Physiology: Lung Cellular and Molecular Physiology, Volume 293, No. 3, pp L809–L819 (2007). DOI. © 2007 American Physiological Society. Used with permission.

audi_1777acc.docx (452 kB)
ADA Accessible Version