Document Type

Article

Language

eng

Publication Date

8-2020

Publisher

American Chemical Society

Source Publication

Biochemistry

Source ISSN

0006-2960

Abstract

Free guanidine is increasingly recognized as a relevant molecule in biological systems. Recently, it was reported that urea carboxylase acts preferentially on guanidine, and consequently, it was considered to participate directly in guanidine biodegradation. Urea carboxylase combines with allophanate hydrolase to comprise the activity of urea amidolyase, an enzyme predominantly found in bacteria and fungi that catalyzes the carboxylation and subsequent hydrolysis of urea to ammonia and carbon dioxide. Here, we demonstrate that urea carboxylase and allophanate hydrolase from Pseudomonas syringae are insufficient to catalyze the decomposition of guanidine. Rather, guanidine is decomposed to ammonia through the combined activities of urea carboxylase, allophanate hydrolase, and two additional proteins of the DUF1989 protein family, expansively annotated as urea carboxylase-associated family proteins. These proteins comprise the subunits of a heterodimeric carboxyguanidine deiminase (CgdAB), which hydrolyzes carboxyguanidine to N-carboxyurea (allophanate). The genes encoding CgdAB colocalize with genes encoding urea carboxylase and allophanate hydrolase. However, 25% of urea carboxylase genes, including all fungal urea amidolyases, do not colocalize with cgdAB. This subset of urea carboxylases correlates with a notable Asp to Asn mutation in the carboxyltransferase active site. Consistent with this observation, we demonstrate that fungal urea amidolyase retains a strong substrate preference for urea. The combined activities of urea carboxylase, carboxyguanidine deiminase and allophanate hydrolase represent a newly recognized pathway for the biodegradation of guanidine. These findings reinforce the relevance of guanidine as a biological metabolite and reveal a broadly distributed group of enzymes that act on guanidine in bacteria.

Comments

Accepted version. Biochemistry, Vol. 59, No. 35 (August 2020): 3258-3270. DOI. © 2020 American Chemical Society. Used with permission.

reiter_14574acc.docx (480 kB)
ADA Accessible Version

Included in

Chemistry Commons

Share

COinS