Document Type


Publication Date


Source Publication


Source ISSN



Oleate-containing layered double hydroxides of zinc aluminum (ZnAl) and magnesium aluminum (MgAl) were used to prepare nanocomposites of polyethylene, poly(ethylene-co-butyl acrylate) and poly(methyl methacrylate). The additives and/or their polymer composites were characterized by X-ray diffraction, FTIR, elemental analysis, thermogravimetric analysis, mechanical testing, and cone calorimetry. The unusual packing of the monounsaturated oleate anions in the gallery of these LDHs facilitates the dispersion of these nanomaterials. The inorganic LDH protects the polymer from thermal oxidation, shown by enhancement of the thermal and fire properties of the corresponding polymer nanocomposites. There is a qualitative difference in the morphology of the two LDHs in PE and PMMA. ZnAl is better dispersed in PE while MgAl is better dispersed in PMMA. The zinc-containing material led to a large reduction in the peak heat release rate in polyethylene, while the magnesium-containing material led to enhancement of the fire properties of the more polar poly(methyl methacrylate). These fire properties are consistent with the morphological differences. Neither of these LDHs shows efficacy with poly(ethylene-co-butyl acrylate), which indicates a selective interaction between the LDH and the various polymers.


Accepted version. Polymer, Vol. 50, No. 15 (July 2009): 3564-3574. DOI. © 2009 Elsevier. Used with permission.

NOTICE: this is the author’s version of a work that was accepted for publication in Polymer. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Polymer, VOL 50, ISSUE 15, July 17, 2009, DOI.

Included in

Chemistry Commons