Document Type




Format of Original

10 p.

Publication Date



Wiley-VCH Verlag

Source Publication

European Journal of Inorganic Chemistry

Source ISSN



Neutral and anionic scorpionate ligands have been employed to generate active-site models of hydroquinone dioxygenases (HQDOs). While the nonheme Fe center in nearly all HQDOs is coordinated to one Asp (or Glu) and two His residues, 1,2-gentisate dioxygenase (GDO) is unique in featuring a three His triad instead. A synthetic GDO model was therefore prepared with the neutral tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (Ph2TIP) ligand. The gentisate substrate was mimicked with the bidentate ligand 2-(1-methylbenzimidazol-2-yl)hydroquinonate (BIHQ). X-ray diffraction analysis of the resulting complex, [Fe(Ph2TIP)(BIHQ)]OTf (1a), revealed a distorted square-pyramidal geometry. Structural and electrochemical data collected for 1a were compared to those previously reported for [Fe(Ph2Tp)(BIHQ)] (1b), which features an anionic hydridotris(3,5-diphenylpyrazol-1-yl)borate (Ph2Tp) ligand. Oxidation of 1a and 1b provides the corresponding FeIII complexes (2a/2b) and the crystal structure of 2b is reported. Both complexes undergo reversible deprotonation to yield the brown chromophores, 3a and 3b. Detailed studies of 3a and 3b with spectroscopic (UV/Vis absorption, EPR, resonance Raman) and computational methods determined that each complex consists of a high-spin FeII center ferromagnetically coupled to a p-semiquinonate radical (BISQ). The (de)protonation-induced valence tautomerization described here resembles key steps in the putative HQDO mechanism.


Accepted version. European Journal of Inorganic Chemistry, Vol. 2016, No. 15-16 (June 2016): 2455-2464. DOI. © 2016 Wiley. Used with permission.

Fiedler_9673acc.docx (1134 kB)
ADA Accessible Version

Included in

Chemistry Commons