Document Type




Publication Date



American Chemical Society

Source Publication


Source ISSN



Reaction of [Re2(CO)9(NCMe)] with tri(2-thienyl)phosphine (PTh3) in refluxing cyclohexane affords three substituted dirhenium complexes: [Re2(CO)9(PTh3)] (1), [Re2(CO)8(NCMe)(PTh3)] (2), and [Re2(CO)8(PTh3)2] (3). Complex 2 was also obtained from the room-temperature reaction of [Re2(CO)8(NCMe)2] with PTh3 and is an unusual example in which the acetonitrile and phosphine ligands are coordinated to the same rhenium atom. Thermolysis of 1 and 3 in refluxing xylene affords [Re2(CO)8(μ-PTh2)(μ-η11-C4H3S)] (4) and [Re2(CO)7(PTh3)(μ-PTh2)(μ-H)] (5), respectively, both resulting from carbon−phosphorus bond cleavage of a coordinated PTh3 ligand. Reaction of [Re2(CO)10] and PTh3 in refluxing xylene gives a complex mixture of products. These products include 35, two further binuclear products, [Re2(CO)7(PTh3)(μ-PTh2)(μ-η11-C4H3S)] (6) and [Re2(CO)7(μ-κ12-Th2PC4H2SPTh)(μ-η11-C4H3S)] (7), and the mononuclear hydrides [ReH(CO)4(PTh3)] (8) and trans-[ReH(CO)3(PTh3)2] (9). Binuclear 6 is structurally similar to 4 and can be obtained from reaction of the latter with 1 equiv of PTh3. Formation of 7 involves a series of rearrangements resulting in the formation of a unique new diphosphine ligand, Th2PC4H2SPTh. Reaction of [Mn2(CO)10] with PTh3 in refluxing toluene affords the phosphine-substituted product [Mn2(CO)9(PTh3)] (10) and two carbon−phosphorus bond cleavage products, [Mn2(CO)6(μ-PTh2)(μ-η15-C4H3S)] (11) and [Mn2(CO)5(PTh3)(μ-PTh2)(μ-η15-C4H3S)] (12). Both 11 and 12 contain a bridging thienyl ligand that is bonded to one manganese atom in a η5-fashion. The molecular structures of eight of these new complexes were established by single-crystal X-ray diffraction studies, allowing a detailed analysis of the disposition of the coordinated ligands.


Accepted version. Organometallics, Vol. 28, No. 5 (2009): 1514-1523. DOI. © 2009 American Chemical Society. Used with permission.

Included in

Chemistry Commons