Document Type

Article

Language

eng

Publication Date

10-20-2018

Publisher

Elsevier

Source Publication

Construction and Building Materials

Source ISSN

0950-0618

Abstract

In this study, embedded strain sensors based on the principle of piezoresistivity were fabricated by epoxy-based composites filled with different contents of carbon nanofibers (CNFs). The piezoresistive performances and relevant parameters including gauge factor, linearity, repeatability and hysteresis of these sensors were investigated. A compensation circuit was proposed to eliminate the influence of temperature on sensing signals of the sensors. The CNFs/epoxy sensors were embedded into concrete cylinders to monitor their compressive strains under monotonic and cyclic loadings, thereby assessing practical applications of the CNFs/epoxy sensors as strain sensors for monitoring concrete structures. The results indicate that the sensors containing 0.58 vol% of CNFs, which have a gauge factor of 37.1, a linearity of 5.5%, a repeatability of 3.8% and a hysteresis of 6.3%, exhibited better piezoresistive performance compared to those containing 0.29 vol% of CNFs. The calibration and monitoring curves exhibited a consistent variation trend when the cylinders embedded with sensors were subjected to monotonic and cyclic loadings. This demonstrates that the CNFs/epoxy sensors have considerable potential to be used as embedded strain sensors for structural health monitoring of concrete structures.

Comments

Accepted version. Construction and Building Materials, Vol. 186 (October 2018): 367-378. DOI. © 2018 Elsevier. Used with permission.

Available for download on Tuesday, October 20, 2020

Share

COinS