An Investigation of Phase-Change Effects During Rapid Compression Machine Experiments

Colin Banyon, Marquette University


Rapid compression machines (RCMs) are well characterized laboratory scale devices capable of achieving internal combustion (IC) engine relevant thermodynamic environments. These machines are often used to collect ignition delay times as targets for gas-phase chemical kinetic fuel autoigntion models. Modern RCMs utilize creviced piston(s) to improve charge homogeneity and allow for an adequate validation of detailed chemistry mechanisms against experiments using computationally efficient, homogeneous reactor models (HRMs). Conventionally, experiments are preformed by introducing a premixed gas of fuel + oxidizer + diluent into the machine, which is compressed volumetrically via a piston. Experiments investigating low-vapor pressure fuels (e.g. diesels, biodiesels, jet fuels, etc.) and surrogates can be conducted by preheating both the charge as well as the machine. This method of fuel loading can lead to pretest fuel pyrolysis as well as machine seal degradation. Under some conditions loading a fuel aerosol of finely atomized liquid droplets in an oxidizer + diluent bath gas (i.e. wet compression) has been suggested to extend the capabilities of RCM experiments to involatile fuels. This work investigates phase-change effects during RCM experiments, especially for aerosol-fueling conditions, while the methodology can be applied to gas-phase fuel experiments where fuel condensation can occur at the compressed conditions within the boundary layer region. To facilitate this study a reduced-order, physics-based model is used. This work highlights important machine-scale influences not investigated in previous work, and provides additional detail concerning an aerosol RCM’s capabilities and limitations. A transient formulation is developed for the multi-phase transport within the RCM reaction chamber as well as the flow to the piston crevice region during both the compression and delay periods. The goal of this work is threefold. First, an a priori knowledge of the stratification present under various conditions can help determine an optimum machine geometry so that discrepancies between experimental data sets and 0D kinetics simulations are minimized for involatile fuels. Second, the model is computationally tractable to prescribe heat loss rates to an HRM during simulations of experiments so that physical effects can be incorporated into simulations using detailed chemistry. Finally, heat loss rates that are prescribed to the HRM are only a function of machine geometry, and are independent of ad hoc and empirically derived fits that vary between facilities. Thus a more adequate comparison of data between RCM facilities and with existing literature can be made.