Treefall gaps and the maintenance of species diversity in a tropical forest

Document Type


Publication Date


Volume Number


Source Publication



The maintenance of species diversity by treefall gaps is a long-standing paradigm in forest ecology. Gaps are presumed to provide an environment in which tree species of differing competitive abilities partition heterogeneous resources. The empirical evidence to support this paradigm, however, remains scarce, and some recent studies even suggest that gaps do not maintain the diversity of shade-tolerant species. Although there is evidence that gaps maintain the diversity of pioneer trees, most of this evidence comes from studies that did not make comparisons between gaps and intact forest sites (controls). Further, nearly all studies on the maintenance of diversity by gaps have ignored lianas, an important component of both old-world and neotropical forests. We tested the hypothesis that treefall gaps maintain shade-tolerant tree, pioneer tree, and liana species diversity in an old-growth forest on Barro Colorado Island (BCI), Panama. We compared the density and species richness of these guilds between paired gap and non-gap sites on both a per-area and a per-individual (per capita) basis. We found no difference in shade-tolerant tree density and species richness between the gap and non-gap sites. Both pioneer tree and liana density and species richness, however, were significantly higher in the gap than in the non-gap sites on both a per-area and a per-individual basis. These results suggest that gaps maintain liana species diversity and that this effect is not merely a consequence of increased density. Furthermore, our data confirm the long-held belief that gaps maintain pioneer tree species diversity. Because lianas and pioneer trees combined account for ~43% of the woody plant species on BCI, and in other forests, our results are likely to be broadly applicable and suggest that gaps play a strong role in the maintenance of woody species diversity.