Document Type

Article

Publication Date

2-2022

Publisher

Springer

Source Publication

Experimental Brain Research

Source ISSN

0014-4819

Abstract

Understanding the effect of task compared to rest on detecting stroke-related network abnormalities will inform efforts to optimize detection of such abnormalities. The goal of this work was to determine whether connectivity measures obtained during an overt task are more effective than connectivity obtained during a “resting” state for detecting stroke-related changes in network function of the brain. This study examined working memory, discrete pedaling, continuous pedaling and language tasks. Functional magnetic resonance imaging was used to examine regional and inter-regional brain network function in 14 stroke and 16 control participants. Independent component analysis was used to identify 149 regions of interest (ROI). Using the inter-regional connectivity measurements, the weighted sum was calculated across only regions associated with a given task. Both inter-regional connectivity and regional connectivity were greater during each of the tasks as compared to the resting state. The working memory and discrete pedaling tasks allowed for detection of stroke-related decreases in inter-regional connectivity, while the continuous pedaling and language tasks allowed for detection of stroke-related enhancements in regional connectivity. These observations illustrate that task-based functional connectivity allows for detection of stroke-related changes not seen during resting states. In addition, this work provides evidence that tasks emphasizing different cognitive domains reveal different aspects of stroke-related reorganization. We also illustrate that within the motor domain, different tasks can reveal inter-regional or regional stroke-related changes, in this case suggesting that discrete pedaling required more central drive than continuous pedaling.

Comments

Accepted version. Experimental Brain Research, Vol. 240 (February 2022): 575-590. DOI. © 2022 Springer. Used with permission.

Available for download on Wednesday, February 01, 2023

Share

COinS