Document Type




Format of Original

17 p.

Publication Date



Rockefeller University Press

Source Publication

Journal of General Physiology

Source ISSN


Original Item ID

doi: 10.1085/jgp.201210936


Imaging, optical mapping, and optical multisite recording of transmembrane potential (Vm) are essential for studying excitable cells and systems. The naphthylstyryl voltage-sensitive dyes, including di-8-ANEPPS, shift both their fluorescence excitation and emission spectra upon changes in Vm. Accordingly, they have been used for monitoring Vm in nonratioing and both emission and excitation ratioing modes. Their changes in fluorescence are usually much less than 10% per 100 mV. Conventional ratioing increases sensitivity to between 3 and 15% per 100 mV. Low sensitivity limits the value of these dyes, especially when imaged with low light systems like confocal scanners. Here we demonstrate the improvement afforded by shifted excitation and emission ratioing (SEER) as applied to imaging membrane potential in flexor digitorum brevis muscle fibers of adult mice. SEER—the ratioing of two images of fluorescence, obtained with different excitation wavelengths in different emission bands—was implemented in two commercial confocal systems. A conventional pinhole scanner, affording optimal setting of emission bands but less than ideal excitation wavelengths, achieved a sensitivity of up to 27% per 100 mV, nearly doubling the value found by conventional ratioing of the same data. A better pair of excitation lights should increase the sensitivity further, to 35% per 100 mV. The maximum acquisition rate with this system was 1 kHz. A fast “slit scanner” increased the effective rate to 8 kHz, but sensitivity was lower. In its high-sensitivity implementation, the technique demonstrated progressive deterioration of action potentials upon fatiguing tetani induced by stimulation patterns at >40 Hz, thereby identifying action potential decay as a contributor to fatigue onset. Using the fast implementation, we could image for the first time an action potential simultaneously at multiple locations along the t-tubule system. These images resolved the radially varying lag associated with propagation at a finite velocity.


Published version. Journal of General Physiology, Vol. 141, No. 3 (March 2013): 371-387. Permalink. © 2013 Oxford University Press. Used with permission.

Included in

Biology Commons