Document Type

Article

Language

eng

Format of Original

12 p.

Publication Date

2012

Publisher

Hindawi Publishing Corporation

Source Publication

Journal of Signal Transduction

Source ISSN

2090-1739

Original Item ID

doi: 10.1155/2012/597214; PubMed Central PMCID: PMC3477797

Abstract

Influx of calcium through voltage-dependent channels regulates processes throughout the nervous system. Specifically, influx through L-type channels plays a variety of roles in early neuronal development and is commonly modulated by G-protein-coupled receptors such as GABAB receptors. Of the four isoforms of L-type channels, only Cav1.2 and Cav1.3 are predominately expressed in the nervous system. Both isoforms are inhibited by the same pharmacological agents, so it has been difficult to determine the role of specific isoforms in physiological processes. In the present study, Western blot analysis and confocal microscopy were utilized to study developmental expression levels and patterns of Cav1.2 and Cav1.3 in the CA1 region of rat hippocampus. Steady-state expression of Cav1.2 predominated during the early neonatal period decreasing by day 12. Steady-state expression of Cav1.3 was low at birth and gradually rose to adult levels by postnatal day 15. In immunohistochemical studies, antibodies against Cav1.2 and Cav1.3 demonstrated the highest intensity of labeling in the proximal dendrites at all ages studied (P1–72). Immunohistochemical studies on one-week-old hippocampi demonstrated significantly more colocalization of GABAB receptors with Cav1.2 than with Cav1.3, suggesting that modulation of L-type calcium current in early development is mediated through Cav1.2 channels.

Comments

Published version. Journal of Signal Transduction, Vol. 2012. No. 597214 (2012). DOI. © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License.

Included in

Biology Commons

Share

COinS