Document Type
Conference Proceeding
Language
eng
Format of Original
5 p.
Publication Date
6-17-2001
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Source Publication
IEEE International Electric Machines and Drives Conference, 2001. IEMDC 2001.
Source ISSN
078037091
Abstract
This paper develops the fundamental foundations of a technique for detection of faults in induction motors that is not based on the traditional Fourier transform frequency domain approach. The technique can extensively and economically characterize and predict faults from the induction machine adjustable speed drive design data. This is done through the development of dual-track proof-of-principle studies of fault simulation and identification. These studies are performed using our proven time stepping coupled finite element-state space method to generate fault case data. Then, the fault cases are classified by their inherent characteristics, so called "signatures" or "fingerprints." These fault signatures are extracted or mined here from the fault case data using our novel time series data mining technique. The dual-track of generating fault data and mining fault signatures was tested here on 3, 6, and 9 broken bar and broken end ring connectors in a 208-volt, 60-Hz, 4-pole, 1.2-hp, squirrel cage 3-phase induction motor.
Recommended Citation
Povinelli, Richard J.; Bangura, John Fayia; Demerdash, Nabeel; and Brown, R. H., "Diagnostics of Bar and End-Ring Connector Breakage Faults in Polyphase Induction Motors Through a Novel Dual Track of Time-Series Data Mining and Time-Stepping Coupled FE-state Space Modeling (conference proceeding)" (2001). Electrical and Computer Engineering Faculty Research and Publications. 252.
https://epublications.marquette.edu/electric_fac/252
Comments
Accepted version. Published as part of the proceedings of the IEEE International Electric Machines and Drives Conference, 2001. IEMDC 2001: 809-813. DOI. © 2001 Institute of Electrical and Electronic Engineers (IEEE). Used with permission.