On Policy Capturing with Fuzzy Measures
Document Type
Article
Language
eng
Publication Date
12-2005
Publisher
Elsevier
Source Publication
European Journal of Operational Research
Source ISSN
0377-2217
Original Item ID
DOI: 10.1016/j.ejor.2004.02.023
Abstract
Policy capturing methods generally apply linear regression analysis to model human judgment. In this paper, we examine the application of fuzzy set and fuzzy measure theories to obtain subjective descriptions of cue importance for policy capturing. At the heart of the approach is a method of learning fuzzy measures. The Shapley values associated with the fuzzy measures provide a basis for comparison with the results of linear regression. However, the fuzzy measure-theoretical approach provides additional insight into interaction effects corresponding to the nonlinear, noncompensatory nature of the underlying decision model. To illustrate the methodology, we estimated the importance of factors and the interactions among them that influence decisions related to strategic investments in telecommunications infrastructure and compared the results from the fuzzy approach to those obtained from traditional statistical methods
Recommended Citation
Liginlal, Divakaran and Ow, Terence T., "On Policy Capturing with Fuzzy Measures" (2005). Management Faculty Research and Publications. 62.
https://epublications.marquette.edu/mgmt_fac/62
Comments
European Journal of Operational Research, Vol. 167, No. 2 (December 2005): 461-474. DOI.