Rhizobium leguminosarum CFN42 Lipopolysaccharide Antigenic Changes Induced by Environmental Conditions

Document Type




Format of Original

8 p.

Publication Date



American Society for Microbiology

Source Publication

Journal of Bacteriology

Source ISSN


Original Item ID



Four monoclonal antibodies were raised against the lipopolysaccharide of Rhizobium leguminosarum bv. phaseoli CFN42 grown in tryptone and yeast extract. Two of these antibodies reacted relatively weakly with the lipopolysaccharide of bacteroids of this strain isolated from bean nodules. Growth ex planta of strain CFN42 at low pH, high temperature, low phosphate, or low oxygen concentration also eliminated binding of one or both of these antibodies. Lipopolysaccharide mobility on gel electrophoresis and reaction with other monoclonal antibodies and polyclonal antiserum indicated that the antigenic changes detected by these two antibodies did not represent major changes in lipopolysaccharide structure. The antigenic changes at low pH were dependent on growth of the bacteria but were independent of nitrogen and carbon sources and the rich or minimal quality of the medium. The Sym plasmid of this strain was not required for the changes induced ex planta. Analysis of bacterial mutants inferred to have truncated O-polysaccharides indicated that part, but not all, of the lipopolysaccharide O-polysaccharide portion was required for binding of these two antibodies. In addition, this analysis suggested that O-polysaccharide structures more distal to lipid A than the epitopes themselves were required for the modifications at low pH that prevented antibody binding. Two mutants were antigenically abnormal, even though they had abundant lipopolysaccharides of apparently normal size. One of these two mutants was constitutively unreactive toward three of the antibodies but indistinguishable from the wild type in symbiotic behavior. The other, whose bacteroids retained an epitope normally greatly diminished in bacteroids, was somewhat impaired in nodulation frequency and nodule development.


Published version. Journal of Bacteriology, Vol. 174, No. 7 (April 1992): 2222-2229. DOI. © 1992 American Society for Microbiology. Used with permission.