Fatigue from High- and Low-frequency Muscle Stimulation: Contractile and Biochemical Alterations

Document Type




Format of Original

8 p.

Publication Date



American Physiological Society

Source Publication

Journal of Applied Physiology

Source ISSN


Original Item ID

DOI: 10.1152/jappl.1987.62.5.2075


This study examined the effect of high- (75 Hz, 1 min) and low- (5 Hz, 1.5 min) frequency stimulation on contractile and biochemical properties of the diaphragm. Tension was reduced to 21 ± 1 and 54 ± 2% (SE) of the initial value after high- and low-frequency stimulation, respectively. After 0, 0.25, 1, and 2 min of recovery from high-frequency stimulation, 5 Hz elicited more force (expressed as % of initial tension) than 75-Hz stimulation. Time 0 recovery values were 21 ± 1 and 78 ± 6% of the initial force for 75- and 5-Hz stimulation, respectively. By 1 min of recovery, force elicited by 5-Hz stimulation had returned to the prefatigue value. In contrast, force production with 75-Hz stimulation did not full recover until 10–15 min. After fatigue produced by low-frequency stimulation, force production with 5-Hz stimulation was reduced to 54 ± 2% of the initial tension, a value significantly lower than the 71 ± 2% of initial force elicited by 75-Hz stimulation. Force production with 5-Hz stimulation increased rapidly in the first 15 s of recovery (54 ± 2% at 0 and 70 ± 2% at 15 s) and by 5 min was significantly greater than the force elicited by 75-Hz stimulation (100 ±3 vs. 93 ± 1%). As before, force production at 75-Hz stimulation did not fully recover until 10–15 min. Both fatigue protocols produced a significant prolongation in isometric twitch contraction and one-half relaxation times. Creatine phosphate (CP) concentration was reduced and muscle lactate increased by both fatigue protocols.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Applied Physiology, Vol. 62, No. 5 (May 1987): 2075-2082. DOI.