Document Type

Article

Publication Date

2-2022

Publisher

MDPI

Source Publication

Antibiotics

Source ISSN

2079-6382

Original Item ID

DOI: 10.3390/antibiotics11020260

Abstract

The World Health Organization has identified antibiotic resistance as one of the largest threats to human health and food security. In this study, we compared antibiotic resistance patterns between ESBL-producing Escherichia coli from human clinical diseases and cefotaxime-resistant environmental strains, as well as their potential to be pathogenic. Antibiotic susceptibility was tested amongst clinical isolates (n = 11), hospital wastewater (n = 22), and urban wastewater (n = 36, both influent and treated effluents). Multi-drug resistance predominated (>70%) among hospitalwastewater and urban wastewater influent isolates. Interestingly, isolates from clinical and urban treated effluents showed similar multi-drug resistance rates (~50%). Most hospital wastewater isolates were Phylogroup A, while clinical isolates were predominately B2, with a more diverse phylogroup population in urban wastewater. ESBL characterization of cefotaxime-resistant populations identified blaCTX-M-1 subgroup as the most common, whereby blaKPC was more associated with ceftazidime and ertapenem resistance. Whole-genome sequencing of a carbapenemase-producing hospital wastewater E. coli strain revealed plasmid-mediated blaKPC-2. Among cefotaxime-resistant populations, over 60% of clinical and 30% of treated effluent E. coli encoded three or more virulence genes exhibiting a pathogenic potential. Together, the similarity among treated effluent E. coli populations and clinical st

Comments

Published version. Antibiotics, Vol. 11, No. 2 (February, 2022): 260. DOI. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. Used with permission.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

hristova_15528acc.docx (164 kB)
ADA Accessible Version

Included in

Biology Commons

Share

COinS