Document Type

Article

Language

eng

Format of Original

8 p.

Publication Date

1-2014

Publisher

Lippincott Williams & Wilkins, Inc.

Source Publication

Neurosurgery

Source ISSN

0148-396X

Original Item ID

doi: 10.1227/NEU.0000000000000171

Abstract

Diffusion tensor imaging (DTI) provides a measure of the directional diffusion of water molecules in tissues. The measurement of DTI indexes within the spinal cord provides a quantitative assessment of neural damage in various spinal cord pathologies. DTI studies in animal models of spinal cord injury indicate that DTI is a reliable imaging technique with important histological and functional correlates. These studies demonstrate that DTI is a noninvasive marker of microstructural change within the spinal cord. In human studies, spinal cord DTI shows definite changes in subjects with acute and chronic spinal cord injury, as well as cervical spondylotic myelopathy. Interestingly, changes in DTI indexes are visualized in regions of the cord, which appear normal on conventional magnetic resonance imaging and are remote from the site of cord compression. Spinal cord DTI provides data that can help us understand underlying microstructural changes within the cord and assist in prognostication and planning of therapies. In this article, we review the use of DTI to investigate spinal cord pathology in animals and humans and describe advances in this technique that establish DTI as a promising biomarker for spinal cord disorders.

Comments

Accepted version. Neurosurgery, Vol. 74, No. 1 (January 2014): 1-8. DOI. © Oxford Academic. Used with permission.

schmit_5942acc.docx (840 kB)
ADA Accessible Version

Share

COinS