Document Type
Article
Language
eng
Format of Original
8 p.
Publication Date
1-2014
Publisher
Lippincott Williams & Wilkins, Inc.
Source Publication
Neurosurgery
Source ISSN
0148-396X
Original Item ID
doi: 10.1227/NEU.0000000000000171
Abstract
Diffusion tensor imaging (DTI) provides a measure of the directional diffusion of water molecules in tissues. The measurement of DTI indexes within the spinal cord provides a quantitative assessment of neural damage in various spinal cord pathologies. DTI studies in animal models of spinal cord injury indicate that DTI is a reliable imaging technique with important histological and functional correlates. These studies demonstrate that DTI is a noninvasive marker of microstructural change within the spinal cord. In human studies, spinal cord DTI shows definite changes in subjects with acute and chronic spinal cord injury, as well as cervical spondylotic myelopathy. Interestingly, changes in DTI indexes are visualized in regions of the cord, which appear normal on conventional magnetic resonance imaging and are remote from the site of cord compression. Spinal cord DTI provides data that can help us understand underlying microstructural changes within the cord and assist in prognostication and planning of therapies. In this article, we review the use of DTI to investigate spinal cord pathology in animals and humans and describe advances in this technique that establish DTI as a promising biomarker for spinal cord disorders.
Recommended Citation
Vedantam, Aditya; Jirjis, Michael B.; Schmit, Brian D.; Wang, Marjorie C.; Ulmer, John L.; and Kurpad, Shekar N., "Diffusion Tensor Imaging of the Spinal Cord: Insights From Animal and Human Studies" (2014). Biomedical Engineering Faculty Research and Publications. 148.
https://epublications.marquette.edu/bioengin_fac/148
ADA Accessible Version
Comments
Accepted version. Neurosurgery, Vol. 74, No. 1 (January 2014): 1-8. DOI. © Oxford Academic. Used with permission.