Document Type
Article
Language
eng
Format of Original
7 p.
Publication Date
7-1-2004
Publisher
American Physiological Society
Source Publication
Journal of Applied Physiology
Source ISSN
0021-8987
Original Item ID
doi: 10.1152/japplphysiol.01329.2003
Abstract
Restenosis limits the effectiveness of stents, but the mechanisms responsible for this phenomenon remain incompletely described. Stent geometry and expansion during deployment produce alterations in vascular anatomy that may adversely affect wall shear stress (WSS) and correlate with neointimal hyperplasia. These considerations have been neglected in previous computational fluid dynamics models of stent hemodynamics. Thus we tested the hypothesis that deployment diameter and stent strut properties (e.g., number, width, and thickness) influence indexes of WSS predicted with three-dimensional computational fluid dynamics. Simulations were based on canine coronary artery diameter measurements. Stent-to-artery ratios of 1.1 or 1.2:1 were modeled, and computational vessels containing four or eight struts of two widths (0.197 or 0.329 mm) and two thicknesses (0.096 or 0.056 mm) subjected to an inlet velocity of 0.105 m/s were examined. WSS and spatial WSS gradients were calculated and expressed as a percentage of the stent and vessel area. Reducing strut thickness caused regions subjected to low WSS (/cm2) to decrease by ∼87%. Increasing the number of struts produced a 2.75-fold increase in exposure to low WSS. Reducing strut width also caused a modest increase in the area of the vessel experiencing low WSS. Use of a 1.2:1 deployment ratio increased exposure to low WSS by 12-fold compared with stents implanted in a 1.1:1 stent-to-vessel ratio. Thinner struts caused a modest reduction in the area of the vessel subjected to elevated WSS gradients, but values were similar for the other simulations. The results suggest that stent designs that reduce strut number and thickness are less likely to subject the vessel to distributions of WSS associated with neointimal hyperplasia.
Recommended Citation
LaDisa, John F.; Olson, Lars E.; Guler, Ismail; Hettrick, Douglas Anthony; Audi, Said H.; Kersten, Judy R.; Warltier, David C.; and Pagel, Paul S., "Stent Design Properties and Deployment Ratio Influence Indexes of Wall Shear Stress: a Three-Dimensional Computational Fluid Dynamics Investigation within a Normal Artery" (2004). Biomedical Engineering Faculty Research and Publications. 217.
https://epublications.marquette.edu/bioengin_fac/217
ADA Accessible Version
Comments
Accepted version. Journal of Applied Physiology, Vol. 97, No. 1 (July 1, 2004): 424-430. DOI. © 2004 American Physiological Society. Used with permission.