Document Type

Conference Proceeding

Language

eng

Format of Original

4 p.

Publication Date

2014

Publisher

Institute of Electrical and Electronics Engineers

Source Publication

2014 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

Source ISSN

1557-170X

Original Item ID

doi: 10.1109/EMBC.2014.6944836

Abstract

Neurological deficits after cerebrovascular accidents very frequently disrupt the kinematics of voluntary movements with the consequent impact in daily life activities. Robotic methodologies enable the quantitative characterization of specific control deficits needed to understand the basis of functional impairments and to design effective rehabilitation therapies. In a group of right handed chronic stroke survivors (SS) with right side hemiparesis, intact proprioception, and differing levels of motor impairment, we used a robotic manipulandum to study right arm function during discrete point-to-point reaching movements and reciprocal out-and-back movements to visual targets. We compared these movements with those of neurologically intact individuals (NI). We analyzed the presence of secondary submovements in the initial (i.e. outward) trajectory portion of the two tasks and found that the SS with severe impairment (FM

Comments

Accepted version. Published as part of the proceedings of the conference, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2014: 5357-5360. DOI. © 2014 Institute of Electrical and Electronics Engineers (IEEE). Used with permission.

Share

COinS