Document Type
Article
Language
eng
Publication Date
3-2012
Publisher
Elsevier
Source Publication
Journal of Biomechanics
Source ISSN
0021-9290
Original Item ID
DOI: 10.1016/j.jbiomech.2011.11.020
Abstract
Pulmonary arterial hypertension (PAH) is caused by narrowing and stiffening of the pulmonary arteries that increase pulmonary vascular impedance (PVZ). In particular, small arteries narrow and large arteries stiffen. Large pulmonary artery (PA) stiffness is the best current predictor of mortality from PAH. We have previously shown that collagen accumulation leads to extralobar PA stiffening at high strain (Ooi et al. 2010). We hypothesized that collagen accumulation would increase PVZ, including total pulmonary vascular resistance (Z0), characteristic impedance (ZC), pulse wave velocity (PWV) and index of global wave reflections (Pb/Pf), which contribute to increased right ventricular afterload. We tested this hypothesis by exposing mice unable to degrade type I collagen (Col1a1R/R) to 21 days of hypoxia (hypoxia), some of which were allowed to recover for 42 days (recovery). Littermate wild-type mice (Col1a1+/+) were used as controls. In response to hypoxia, mean PA pressure (mPAP) increased in both mouse genotypes with no changes in cardiac output (CO) or PA inner diameter (ID); as a consequence, Z0 (mPAP/CO) increased by ∼100% in both genotypes (pZC, PWV and Pb/Pf did not change. However, with recovery, ZC and PWV decreased in the Col1a1+/+ mice and remained unchanged in the Col1a1R/R mice. Z0 decreased with recovery in both genotypes. Microcomputed tomography measurements of large PAs did not show evidence of stiffness changes as a function of hypoxia exposure or genotype. We conclude that hypoxia-induced PA collagen accumulation does not affect the pulsatile components of pulmonary hemodynamics but that excessive collagen accumulation does prevent normal hemodynamic recovery, which may have important consequences for right ventricular function.
Recommended Citation
Tabima, Diana M.; Roldan-Alzate, Alejandro; Wang, Zhijie; Hacker, Timothy A.; Molthen, Robert C.; and Chesler, Naomi C., "Persistent Vascular Collagen Accumulation Alters Hemodynamic Recovery from Chronic Hypoxia" (2012). Biomedical Engineering Faculty Research and Publications. 333.
https://epublications.marquette.edu/bioengin_fac/333
Comments
NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Biomechanics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Biomechanics, Vol. 45, No. 5 (March 2011): 799–804. DOI. © 2011 Elsevier. Used with permission.