Computational Simulations for Aortic Coarctation: Representative Results From a Sampling of Patients
Document Type
Article
Language
eng
Publication Date
9-2011
Publisher
American Society of Mechanical Engineers
Source Publication
Journal of Biomechanical Engineering
Source ISSN
0148-0731
Original Item ID
DOI: 10.1115/1.4004996
Abstract
Treatments for coarctation of the aorta (CoA) can alleviate blood pressure (BP) gradients(D), but long-term morbidity still exists that can be explained by altered indices of hemodynamics and biomechanics. We introduce a technique to increase our understanding of these indices for CoA under resting and nonresting conditions, quantify their contribution to morbidity, and evaluate treatment options. Patient-specific computational fluid dynamics (CFD) models were created from imaging and BP data for one normal and four CoA patients (moderate native CoA: D12 mmHg, severe native CoA: D25 mmHg and postoperative end-to-end and end-to-side patients: D0 mmHg). Simulations incorporated vessel deformation, downstream vascular resistance and compliance. Indices including cyclic strain, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) were quantified. Simulations replicated resting BP and blood flow data. BP during simulated exercise for the normal patient matched reported values. Greatest exercise-induced increases in systolic BP and mean and peak DBP occurred for the moderate native CoA patient (SBP: 115 to 154 mmHg; mean and peak DBP: 31 and 73 mmHg). Cyclic strain was elevated proximal to the coarctation for native CoA patients, but reduced throughout the aorta after treatment. A greater percentage of vessels was exposed to subnormal TAWSS or elevated OSI for CoA patients. Local patterns of these indices reported to correlate with atherosclerosis in normal patients were accentuated by CoA. These results apply CFD to a range of CoA patients for the first time and provide the foundation for future progress in this area.
Recommended Citation
LaDisa, John F.; Figueroa, Alberto; Vignon-Clementel, Irene E.; Kim, Hyun Jin; Xiao, Nan; Ellwein, Laura M.; Chan, Frandics P.; Feinstein, Jeffrey A.; and Taylor, Charles A., "Computational Simulations for Aortic Coarctation: Representative Results From a Sampling of Patients" (2011). Biomedical Engineering Faculty Research and Publications. 38.
https://epublications.marquette.edu/bioengin_fac/38
ADA accessible version
Comments
Accepted version. Journal of Biomedical Engineering, Vol. 133, No. 9 (September, 2011): 091008-1 - 091008-9. DOI. © 2011 ASME. Used with permission.