Document Type
Article
Language
eng
Format of Original
11 p.
Publication Date
2012
Publisher
American Association of Physicists in Medicine
Source Publication
Medical Physics
Source ISSN
0094-2405
Original Item ID
doi: 10.1118/1.4739243
Abstract
Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360◦ through anthropomorphic voxelized female chest and head (0◦ and 30◦ tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tables of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDIvol and multiplying by a physical CTDIvol measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30◦ relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate total organ doses calculated using our database are within 1% of those calculated using Monte Carlo simulations with the same geometry and scan parameters for all organs except red bone marrow (within 6%), and within 23% of published estimates for different voxelized phantoms. Results from the example of using the database to estimate organ dose for coronary angiography CT acquisitions show 2.1%, 1.1%, and −32% change in breast dose and 2.1%, −0.74%, and 4.7% change in lung dose for reduced kVp, tube current modulated, and partial angle protocols, respectively, relative to the reference protocol. Results show −19.2% difference in dose to eye lens for a tilted scan relative to a nontilted scan. The reported relative changes in organ doses are presented without quantification of image quality and are for the sole purpose of demonstrating the use of the proposed database. Conclusions: The proposed database and calculation method enable the estimation of organ dose for coronary angiography and brain perfusion CT scans utilizing any spectral shape and angular tube current modulation scheme by taking advantage of the precalculated Monte Carlo simulation results. The database can be used in conjunction with image quality studies to develop optimized acquisition techniques and may be particularly beneficial for optimizing dual kVp acquisitions for which numerous kV, mA, and filtration combinations may be investigated. © 2012 American Association of Physicists in Medicine.
Recommended Citation
Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos; and Schmidt, Taly Gilat, "A Database for Estimating Organ Dose for Chest and Head CT Scans for Arbitrary Spectra and Angular Tube Current Modulation" (2012). Biomedical Engineering Faculty Research and Publications. 45.
https://epublications.marquette.edu/bioengin_fac/45
Comments
Published version. Medical Physics, Vol. 39, No. 9 (2012): 5336-5346. Permalink. © 2012 American Institute of Physics. Used with permission.