Document Type
Article
Language
eng
Publication Date
11-15-2007
Publisher
Wiley
Source Publication
Journal of Prosthodontics
Source ISSN
1059-941X
Abstract
Purpose: The general aim of this study and those presented in Parts 2–4 of this series was to characterize the structure, properties, wear, and fracture of prosthetic retaining screws in fixed detachable hybrid prostheses after long‐term use in vivo. This part of the overall investigation addresses whether there are differences in thread wear between the screws closest to the fulcrum and those that are farthest from the fulcrum in fixed detachable hybrid prostheses.
Materials and Methods: The total number of prosthetic retaining screws used in this study was 100 (10 new and 90 used). New screws (controls) from Nobel Biocare (NB) were divided into Group 1 (slotted) and Group 2 (hexed). Ninety used screws (in service 18–120 months) were retrieved from fixed detachable hybrid prostheses in 18 patients (5 screws from each patient, 60 from NB and 30 from Sterngold). The used screws were divided into 18 groups. Additionally, each group was subdivided into A and B categories. Category A contained the middle three prosthetic screws, which were considered the farthest screws from the fulcrum line. Category B contained the most posterior two screws, which were considered the screws closest to the fulcrum line. All 100 screws were subjected to thorough, nondestructive testing.
Results: Light and scanning electron microscopic examination of all used screws for each group revealed surface deterioration of the active profile of the screw threads consistent with adhesive wear. The observed thread profile deterioration ranged from mild to severe. The wear was aggressive enough to cause galling, which led to thinning of the threads and, in severe cases, to knife‐edges at thread crests. In ten groups, the most anterior three screws exhibited more wear than the most posterior two screws. In addition to thread wear, severe plastic deformation was detected on the bottom part of each screw for three groups, and a long external longitudinal crack was detected in one screw of Group 2.
Conclusions: The findings of this study and those presented in Parts 2–4 demonstrate that different retaining screws from the same manufacturer and/or from different manufacturers have different geometrical design, microstructures, major alloy constituents, and microhardness, and that these differences influence their preload and fractured load values. In this part of the overall investigation, the occurrence of galling as a result of wear involving prosthetic retaining screws appears to be an inevitable and unavoidable consequence of long‐term use in vivo in fixed detachable hybrid prostheses regardless of the intended/original preload value. The galling rate is greater on the middle three screws compared to the most posterior two screws in fixed detachable hybrid prostheses. The wear pattern is consistent with an adhesive wear mechanism; however, this study does not provide enough data to support a definitive analysis.
Recommended Citation
Al Jabbari, Youssef S.; Fournelle, Raymond; Ziebert, Gerald J.; Toth, Jeffrey M.; and Iacopino, Anthony, "Mechanical Behavior and Failure Analysis of Prosthetic Retaining Screws after Long‐term Use In Vivo. Part 1: Characterization of Adhesive Wear and Structure of Retaining Screws" (2007). Biomedical Engineering Faculty Research and Publications. 550.
https://epublications.marquette.edu/bioengin_fac/550
Comments
Accepted version. Journal of Prosthodontics, Vol. 17, No. 3 (November 15, 2007): 168-180. DOI. © 2007 John Wiley & Sons, Inc. Used with permission.