Document Type

Article

Language

eng

Publication Date

2019

Publisher

The Institute of Electrical and Electronics Engineers

Source Publication

2019 9th International IEEE/EMBS Conference on Neural Engineering (NER),

Source ISSN

9781538679227

Abstract

Despite the widespread use of Electroecephalography (EEG) as an imaging modality, neural generators of current dipoles measured by EEG at the scalp are not fully understood. Here, we use two morphologically accurate multicompartments neuron models (layer IV pyramidal cell and layer V spiny stellate cell) to characterize how spiking neurons generate current dipoles in response to synaptic input. The simulations indicate that the dipole generated by synaptic inputs required to drive a pyramidal cell to threshold is smaller than the dipole associated the action potential itself. These results suggest a greater role of spiking neural activity toward EEG signals measured at the scalp than typically assumed.

Comments

Accepted version. 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), (March 20-23, 2019): 352-355. DOI. © 2019 The Institute of Electrical and Electronics Engineers. Used with permission.

beardsley_14070acc.docx (224 kB)
ADA Accessible Version

Share

COinS