Document Type
Article
Publication Date
10-16-2018
Publisher
National Academy of Sciences
Source Publication
Proceedings of the National Academy of Sciences (PNAS)
Source ISSN
0027-8424
Abstract
Tumor hypoxia reduces the effectiveness of radiation therapy by limiting the biologically effective dose. An acute increase in tumor oxygenation before radiation treatment should therefore significantly improve the tumor cell kill after radiation. Efforts to increase oxygen delivery to the tumor have not shown positive clinical results. Here we show that targeting mitochondrial respiration results in a significant reduction of the tumor cells’ demand for oxygen, leading to increased tumor oxygenation and radiation response. We identified an activity of the FDA-approved drug papaverine as an inhibitor of mitochondrial complex I. We also provide genetic evidence that papaverine’s complex I inhibition is directly responsible for increased oxygenation and enhanced radiation response. Furthermore, we describe derivatives of papaverine that have the potential to become clinical radiosensitizers with potentially fewer side effects. Importantly, this radiosensitizing strategy will not sensitize well-oxygenated normal tissue, thereby increasing the therapeutic index of radiotherapy.
Recommended Citation
Benej, Martin; Hong, Xiangqian; Vibhute, Sandip; Scott, Sabina; Wu, Jinghai; Graves, Edward; Le, Quynh-Thu; Koong, Albert C.; Giaccia, Amato J.; Yu, Bing; Chen, Ching-Shih; Papandreou, Ioanna; and Denko, Nicholas C., "Papaverine and its Derivatives Radiosensitize Solid Tumors by Inhibiting Mitochondrial Metabolism" (2018). Biomedical Engineering Faculty Research and Publications. 644.
https://epublications.marquette.edu/bioengin_fac/644
ADA Accessible Version
Comments
Accepted version. Proceedings of the National Academy of Sciences (PNAS), Vol. 115, No. 42 (October 16, 2018): 10756-10761. DOI. © 2018 National Academy of Sciences. Used with permission.