Document Type
Article
Language
eng
Format of Original
9 p.
Publication Date
9-2014
Publisher
Elsevier
Source Publication
Inorganica Chimica Acta
Source ISSN
0020-1693
Abstract
Several homo- and heterobimetallic NiII–MII complexes (MII = Fe, Co, Ni, Zn) supported by an unsymmetric polydentate ligand (L13−) are reported (L13− is the trianion of 2-[bis(2-hydroxy-3,5-tert-butylphenyl)aminomethyl]-4-methyl-6-[(2-pyridylmethyl)iminomethyl]phenol). The L13− chelate provides two distinct coordination environments: a planar tridentate {N2O} site (A) and a tetradentate {NO3} site (B). Reaction of L13− with equimolar amounts of NiII and MII salts provides bimetallic complexes in which the NiII ion exclusively occupies the tetragonal A-site and the MII ion is found in the tripodal B-site. X-ray crystal structures revealed that the two metal centers are bridged by the central phenolate donor of L13− and an anionic X-ligand, where X = μ-1,1-acetate, hydroxide, or methoxide. The metal ions are separated by 3.0–3.1 Å in the MAMBX structures, where MA and MB indicate the ion located in the A and B sites, respectively, and X represents the second bridging ligand. Analysis of magnetic data and UV–Vis–NIR spectra indicate that, in all cases, the two metal ions adopt high-spin states in solution. The NiAII centers undergo one-electron reduction at −1.17 V vs. SCE, while the NiII and CoII ions in the phenolate-rich B-site are reduced at lower potentials. Significantly, the NiAII center possesses three open or labile coordination sites in a meridional geometry, which are generally occupied by solvent-derived ligands in the crystal structures. The NiMBX complexes serve as structural mimics of heterometallic Ni-containing sites in biology, such as the C-cluster of carbon monoxide dehydrogenase (CODH).
Recommended Citation
Wang, Denan; Lindeman, Sergey V.; and Fiedler, Adam T., "Synthesis of Homo- and Heterobimetallic NiII–MII (M = Fe, Co, Ni, Zn) Complexes Based on an Unsymmetric Ligand Framework: Structures, Spectroscopic Features, and Redox Properties" (2014). Chemistry Faculty Research and Publications. 554.
https://epublications.marquette.edu/chem_fac/554
Comments
Accepted version. Inorganica Chimica Acta, Vol. 421 (September, 2014): 559-567. DOI. © 2014 Elsevier. Used with permission.