Document Type
Article
Language
eng
Publication Date
4-2012
Publisher
Wiley
Source Publication
European Journal of Inorganic Chemistry
Source ISSN
1434-1948
Abstract
Several monoiron(II) complexes containing tris(imidazolyl)phosphane (TIP) ligands have been prepared and structurally characterized by using X-ray crystallography and NMR spectroscopy. Two TIP ligands were employed: tris(2-phenylimidazol-4-yl)phosphane (4-TIPPh) and tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphane (2-TIPPh2). These tridentate ligands resemble the 3-histidine (3His) facial triad found recently in the active sites of certain nonheme iron dioxygenases. Three of the reported complexes are designed to serve as convenient precursors to species that model the enzyme–substrate intermediates of 3His dioxygenases; thus, each contains an [Fe(κ3-TIP)]2+ unit in which the remaining coordination sites are occupied by easily displaced ligands, such as solvent molecules and/or carboxylate groups. The viability of these complexes as precursors was demonstrated through the synthesis of TIP-based complexes with β-diketonate and salicylate ligands that represent faithful models of β-diketone dioxygenase and salicylate 1,2-dioxygenase, respectively.
Recommended Citation
Bittner, Michael M.; Baus, Jacob; Lindeman, Sergey V.; and Fiedler, Adam T., "Synthesis and Structural Characterization of Iron(II) Complexes with Tris(imidazolyl)phosphane Ligands: A Platform for Modeling the 3-Histidine Facial Triad of Nonheme Iron Dioxygenases" (2012). Chemistry Faculty Research and Publications. 574.
https://epublications.marquette.edu/chem_fac/574
Comments
Accepted version. European Journal of Inorganic Chemistry, Vol. 2012, No. 11 (April 2012): 1848-1856. DOI. © 2012 Wiley. Used with permission.