Novel Charge-Transfer Materials via Cocrystallization of Planar Aromatic Donors and Spherical Polyoxometalate Acceptors
Document Type
Article
Language
eng
Publication Date
2000
Publisher
American Chemical Society
Source Publication
Journal of the American Chemical Society
Source ISSN
0002-7863
Original Item ID
doi:10.1021/ja0019878
Abstract
Spherical polyoxometalates (POMs) such as M6O192- and SiM12O404- (with M = Mo or W) and planar arene donors (anthracenes and pyrenes) can be cocrystallized (despite their structural incompatibility) by attaching a cationic “anchor” onto the arene which then clings to the POM anion by Coulombic forces. As a result, novel charge-transfer (CT) salts are prepared from arene donors and Lindqvist-type [M6O19]2- and Keggin-type [SiM12O40]4- acceptors with overall 2:1 and 4:1 stoichiometry, respectively. The CT character of the dark-colored (yellow to red) crystalline materials is confirmed by the linear Mulliken correlation between the CT transition energies and the reduction potentials of the POM acceptors, as well as by the transient (diffuse reflectance) absorption spectra (upon picosecond laser excitation) of anthracene or pyrene cation radicals (in monomeric and π-dimeric forms). X-ray crystallographic studies reveal a unique “dimeric” arrangement of the cofacially oriented arene couples which show contact points with the oxygen surface of the POMs that vary with distance, depending on the POM/arene combination. Moreover, the combination of X-ray crystallographic and spectroscopic techniques results in the observation of a logical structure/property relationshipthe shorter the distance between the POM surface and the arene nucleus, the darker is the color of the CT crystal and the faster is the decay of the laser-excited charge-transfer state (due to back-electron transfer).
Recommended Citation
Maguères, P. Le; Hubig, S. M.; Lindeman, Sergey V.; Peya, P.; and Kochi, Jay K., "Novel Charge-Transfer Materials via Cocrystallization of Planar Aromatic Donors and Spherical Polyoxometalate Acceptors" (2000). Chemistry Faculty Research and Publications. 690.
https://epublications.marquette.edu/chem_fac/690
Comments
Accepted version. Journal of the American Chemical Society, Vol. 122, No. 41 (2000): 10073-10082. DOI. © 2000 American Chemical Society. Used with permission.
Sergey V. Lindeman was affiliated with the University of Houston at the time of publication.