Document Type

Article

Language

eng

Format of Original

10 p.

Publication Date

1-2003

Publisher

American Chemical Society

Source Publication

Journal of Organic Chemistry

Source ISSN

0022-3263

Original Item ID

DOI: 10.1021/jo020421u

Abstract

The addition of stabilized carbon nucleophiles to tricarbonyl(1-methoxycarbonylpentadienyl)iron(1+) cation (1a) proceeds via attack at C2 on the face of the ligand opposite the Fe(CO)3 group to generate tricarbonyl(pentenediyl)iron complexes 2. Oxidation of complexes 2 affords vinylcyclopropanecarboxylates in good yield. In general, the relative stereochemistry about the cyclopropane ring reflects reductive elimination with retention of configuration. In cases where the C2 substituent is bulky (i.e., 2b) the major cyclopropane product 9b represents ring closure with inversion at C3. A mechanism involving π−σ−π rearrangement of the initially oxidized (pentenediyl)iron species is proposed to account for these results. Experiments which probe the stereochemistry of deuterium labeling in the vinyl group of the vinylcyclopropanecarboxylate products were carried out, and these results are consistent with the proposed mechanism. This methodology for the preparation of vinylcyclopropanecarboxylates was applied to the synthesis of 2-(2‘-carboxycyclopropyl)glycines (+)-22 and (−)-23 and the cyclopropane triester (−)-26.

Comments

Accepted version. Journal of Organic Chemistry , Volume 68, No. 3 (2003), DOI. © 2003 American Chemical Society. Used with permission.

Included in

Chemistry Commons

Share

COinS