Document Type




Format of Original

10 p.

Publication Date



American Chemical Society

Source Publication

Journal of Organic Chemistry

Source ISSN


Original Item ID

DOI: 10.1021/jo020421u


The addition of stabilized carbon nucleophiles to tricarbonyl(1-methoxycarbonylpentadienyl)iron(1+) cation (1a) proceeds via attack at C2 on the face of the ligand opposite the Fe(CO)3 group to generate tricarbonyl(pentenediyl)iron complexes 2. Oxidation of complexes 2 affords vinylcyclopropanecarboxylates in good yield. In general, the relative stereochemistry about the cyclopropane ring reflects reductive elimination with retention of configuration. In cases where the C2 substituent is bulky (i.e., 2b) the major cyclopropane product 9b represents ring closure with inversion at C3. A mechanism involving π−σ−π rearrangement of the initially oxidized (pentenediyl)iron species is proposed to account for these results. Experiments which probe the stereochemistry of deuterium labeling in the vinyl group of the vinylcyclopropanecarboxylate products were carried out, and these results are consistent with the proposed mechanism. This methodology for the preparation of vinylcyclopropanecarboxylates was applied to the synthesis of 2-(2‘-carboxycyclopropyl)glycines (+)-22 and (−)-23 and the cyclopropane triester (−)-26.


Accepted version. Journal of Organic Chemistry , Volume 68, No. 3 (2003), DOI. © 2003 American Chemical Society. Used with permission.

Included in

Chemistry Commons