Document Type
Article
Language
Eng
Publication Date
2018
Publisher
American Chemical Society
Source Publication
Biochemistry
Source ISSN
0006-2960
Abstract
Cellular membranes are heterogeneous planar lipid bilayers displaying lateral phase separation with the nanometer-scale liquid-ordered phase (also known as “lipid rafts”) surrounded by the liquid-disordered phase. Many membrane-associated proteins were found to permanently integrate into the lipid rafts, which is critical for their biological function. Isoforms H and N of Ras GTPase possess a unique ability to switch their lipid domain preference depending on the type of bound guanine nucleotide (GDP or GTP). This behavior, however, has never been demonstrated in vitro in model bilayers with recombinant proteins and therefore has been attributed to the action of binding of Ras to other proteins at the membrane surface. In this paper, we report the observation of the nucleotide-dependent switch of lipid domain preferences of the semisynthetic lipidated N-Ras in lipid raft vesicles in the absence of additional proteins. To detect segregation of Ras molecules in raft and disordered lipid domains, we measured Förster resonance energy transfer between the donor fluorophore, mant, attached to the protein-bound guanine nucleotides, and the acceptor, rhodamine-conjugated lipid, localized into the liquid-disordered domains. Herein, we established that N-Ras preferentially populated raft domains when bound to mant-GDP, while losing its preference for rafts when it was associated with a GTP mimic, mant-GppNHp. At the same time, the isolated lipidated C-terminal peptide of N-Ras was found to be localized outside of the liquid-ordered rafts, most likely in the bulk-disordered lipid. Substitution of the N-terminal G domain of N-Ras with a homologous G domain of H-Ras disrupted the nucleotide-dependent lipid domain switch.
Recommended Citation
Shishina, Anna K.; Kovrigina, Elizaveta A.; Galiakhmetov, Azamat R.; Rathore, Rajendra; and Kovrigin, Evgenii L., "Study of Förster Resonance Energy Transfer to Lipid Domain Markers Ascertains Partitioning of Semisynthetic Lipidated N-Ras in Lipid Raft Nanodomains" (2018). Chemistry Faculty Research and Publications. 891.
https://epublications.marquette.edu/chem_fac/891
Comments
Accepted version. Biochemistry, Vol. 57, No. 5 (2018): 872-881. DOI. © 2017 American Chemical Society. Used with permission.