Document Type

Article

Language

eng

Publication Date

2017

Publisher

American Institute of Physics

Source Publication

The Journal of Chemical Physics

Source ISSN

0021-9606

Abstract

In order to identify the origin of possible errors in the mixed quantum/classical approach to inelastic scattering [A. Semenov and D. Babikov, J. Chem. Phys. 140, 044306 (2014) and A. Semenov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 141, 114304 (2014)], a simplified model is considered that consists of one intermolecular degree of freedom and two intramolecular states, coupled by a simple potential. For this system, analytic derivations are carried out to determine (i) the exact quantum mechanical solution of the inelastic scattering problem, (ii) a simplified version of it with all oscillatory terms neglected, and (iii) the Ehrenfest solution in which the translational motion is described by the mean-field trajectory while the internal molecular motion is treated by the time-dependent Schrodinger equation. It is shown that the appropriate choice of velocity for the mean-field trajectory permits to enforce microscopic reversibility and gives results in excellent agreement with full-quantum results. The average velocity method of Billing is rigorously derived as a limiting case (of this more general approach), when reversibility is enforced locally, at the initial moment of time only. It is demonstrated that errors of state-to-state transition probabilities in the Ehrenfest approach occur at lower values of total energy E if the magnitudes of excitation energy ΔE, potential energy difference between the two states ΔV, and coupling of two states V12 are large. Possible ways of applying this concept to rotational transitions in real molecules are explored, using examples from CO + CO inelastic scattering.

Comments

Published version. The Journal of Chemical Physics, Vol. 146, No. 22 (2017): 224107. DOI. © 2017 AIP Publishing LLC. Used with permission.

Included in

Chemistry Commons

Share

COinS