Document Type

Article

Language

eng

Publication Date

5-2014

Publisher

American Geophysical Union

Source Publication

Journal of Geophysical Research. Biogeosciences

Source ISSN

2169-8953

Abstract

Regional‐scale drought‐induced forest mortality events are projected to become more frequent under future climates due to changes in rainfall patterns. The occurrence of these mortality events is driven by exogenous factors such as frequency and severity of drought and endogenous factors such as tree water and carbon use strategies. To explore the link between these exogenous and endogenous factors underlying forest mortality, a stochastic ecohydrological framework that accounts for random arrival and length of droughts as well as responses of tree water and carbon balance to soil water deficit is proposed. The main dynamics of this system are characterized with respect to the spectrum of anisohydric‐isohydric stomatal control strategies. Using results from a controlled drought experiment, a maximum tolerable drought length at the point where carbon starvation and hydraulic failure occur simultaneously is predicted, supporting the notion of coordinated hydraulic function and metabolism. We find qualitative agreement between the model predictions and observed regional‐scale canopy dieback across a precipitation gradient during the 2002–2003 southwestern United States drought. Both the model and data suggest a rapid increase of mortality frequency below a precipitation threshold. The model also provides estimates of mortality frequency for given plant drought strategies and climate regimes. The proposed ecohydrological approach can be expanded to estimate the effect of anticipated climate change on drought‐induced forest mortality and associated consequences for the water and carbon balances.

Comments

Published version. Journal of Geophysical Research. Biogeosciences, Vol. 119, No. 5 (May 2014): 965-981. DOI. © 2014 American Geophysical Union. Used with permission.

Share

COinS