Document Type
Conference Proceeding
Language
eng
Format of Original
10 p.
Publication Date
2014
Publisher
Society for Experimental Mechanics
Source Publication
MEMS and Nanotechnology: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics
Source ISSN
978-3-319-00779-3
Original Item ID
doi: 10.1007/978-3-319-00780-9_15
Abstract
Dynamic-mode microcantilever-based devices are potentially well suited to biological and chemical sensing applications. However, when these applications involve liquid-phase detection, fluid-induced dissipative forces can significantly impair device performance. Recent experimental and analytical research has shown that higher in-fluid quality factors (Q) are achieved by exciting microcantilevers in the lateral flexural mode. However, experimental results show that, for microcantilevers having larger width-to-length ratios, the behaviors predicted by current analytical models differ from measurements. To more accurately model microcantilever resonant behavior in viscous fluids and to improve understanding of lateral-mode sensor performance, a new analytical model is developed, incorporating both viscous fluid effects and “Timoshenko beam” effects (shear deformation and rotatory inertia). Beam response is examined for two harmonic load types that simulate current actuation methods: tip force and support rotation. Results are expressed in terms of total beam displacement and beam displacement due solely to bending deformation, which correspond to current detection methods used with microcantilever-based devices (optical and piezoresistive detection, respectively). The influences of the shear, rotatory inertia, and fluid parameters, as well as the load/detection scheme, are investigated. Results indicate that load/detection type can impact the measured resonant characteristics and, thus, sensor performance, especially at larger values of fluid resistance.
Recommended Citation
Schultz, Joshua A.; Heinrich, Stephen M.; Josse, Fabien; Dufour, Isabelle; Nigro, Nicholas J.; Beardslee, Luke A.; and Brand, Oliver, "Timoshenko Beam Model for Lateral Vibration of Liquid-Phase Microcantilever-Based Sensors" (2014). Civil and Environmental Engineering Faculty Research and Publications. 29.
https://epublications.marquette.edu/civengin_fac/29
Included in
Civil and Environmental Engineering Commons, Electrical and Computer Engineering Commons
Comments
Accepted version. Published as part of the proceedings of the conference, the 2013 Annual Conference on Experimental and Applied Mechanics, 2014: 115-124. DOI. © 2014 Society for Experimental Mechanics. Used with permission.