Document Type

Article

Publication Date

12-2018

Publisher

National Academy of Sciences

Source Publication

Transportation Research Record

Source ISSN

0361-1981

Original Item ID

DOI: 10.1177/0361198118758025

Abstract

Flexible pavement design procedures use maximum mechanistic strains to predict service life via empirical transfer functions. The conventional method of using predefined point locations for potential damage may not accurately represent realistic pavement scenarios. For instance, flexible airfield pavement analysis mainly considers the critical strain at the bottom of the asphalt concrete (AC), which may not characterize near-surface cracking potential. In lieu of point strains, domain analysis, a new method, accounts for the multi-axial behavior of pavements, as inherently excited by three-dimensional (3-D) and nonuniform aircraft tire–pavement contact stresses. Initially applied on highway pavements considering truck tire loading, this approach is an initial breakthrough for implementing domain analysis on flexible airfield pavements; in this study, A-380 and F-16 landing gear tire loads were considered. As anticipated, speed and temperature had significant influence on cumulative domain stress and strain ratios. The decrease in speed and increase in temperature not only increased the cumulative ratios up to 1.81, but nonlinearity of the problem became more prevalent at worst loading conditions (8 kph and 45°C). Minimal difference in ratios for F-16 cases suggests that the National Airport Pavement Test Facility pavement structure became less sensitive to conditions under low loads. Point response analysis revealed that critical strains were not significantly influenced by the tire-inflation pressure, for example, tensile strain at the bottom of the AC only increased up to 13.6% (considering 8 kph speed), whereas domain analysis quantified the increase with respect to 3-D stress or strain states.

Comments

Accepted version. Transportation Research Record, Vol. 2672, No. 40 (December 2018): 326-335. DOI. © 2018 National Academy of Sciences. Used with permission.

Hernandez_15061acc.docx (597 kB)
ADA Accessible Version

Share

COinS