Document Type
Article
Publication Date
9-2024
Publisher
Elsevier
Source Publication
Science of the Total Environment
Source ISSN
0048-9697
Original Item ID
DOI: 10.1016/j.scitotenv.2024.173736
Abstract
Improved treatment of per- and polyfluoroalkyl substances (PFAS) in water is critically important in light of the proposed United States Environmental Protection Agency (USEPA) drinking water regulations at ng L−1 levels. The addition of peroxymonosulfate (PMS) during electrooxidation (EO) can remove and destroy PFAS, but ng L−1 levels have not been tested, and PMS itself can be toxic. The objective of this research was to test peroxydisulfate (PDS, an alternative to PMS) activation by boron-doped diamond (BDD) electrodes for perfluorooctanoic acid (PFOA) degradation. The influence of PDS concentration, temperature, and environmental water matrix effects, and PFOA concentration on PDS-EO performance were systematically examined. Batch reactor experiments revealed that 99 % of PFOA was degraded and 69% defluorination was achieved, confirming PFOA mineralization. Scavenging experiments implied that sulfate radicals (SO4–) and hydroxyl radicals (HO) played a more important role for PFOA degradation than 1O2 or electrons (e−). Further identification of PFOA degradation and transformation products by liquid chromatography-mass spectrometry (LC-MS) analysis established plausible PFOA degradation pathways. The analysis corroborates that direct electron transfers at the electrode initiate PFOA oxidation and SO4– improves overall treatment by cleaving the CC bond between the C7F15 and COOH moieties in PFOA, leading to possible products such as C7F15 and F−. The perfluoroalkyl radicals can be oxidized by SO4– and HO, resulting in the formation of shorter chain perfluorocarboxylic acids (e.g., perfluorobutanoic acid [PFBA]), with eventual mineralization to CO2 and F−. At an environmentally relevant low initial concentration of 100 ng L−1 PFOA, 99 % degradation was achieved. The degradation of PFOA was slightly affected by the water matrix as less removal was observed in an environmental river water sample (91 %) compared to tests conducted in Milli-Q water (99 %). Overall, EO with PDS provided a destructive approach for the elimination of PFOA.
Recommended Citation
Samuel, Melvin S.; Govindan, Kadarkarai; Ryan, Donald R.; McBeath, Sean T.; Mayer, Brooke K.; and McNamara, Patrick J., "Enhanced Perfluorooctanoic Acid (PFOA) Degradation by Electrochemical Activation of Peroxydisulfate (PDS) During Electrooxidation for Water Treatment" (2024). Civil and Environmental Engineering Faculty Research and Publications. 402.
https://epublications.marquette.edu/civengin_fac/402
Comments
Accepted version. Social of the Total Environment, Vol. 942 (September 10, 2024). DOI. © 2024 Elsevier. Used with permission.