Document Type
Article
Language
eng
Publication Date
11-2017
Publisher
Elsevier
Source Publication
Dental Materials
Source ISSN
0109-5641
Abstract
Objective
Vascularization is a critical process during bone regeneration/repair and the lack of tissue vascularization is recognized as a major challenge in applying bone tissue engineeringmethods for cranial and maxillofacial surgeries. The aim of our study is to fabricate a vascular endothelial growth factor (VEGF)-loaded gelatin/alginate/β-TCP composite scaffold by 3D printing method using a computer-assisted design (CAD) model.
Methods
The paste, composed of (VEGF-loaded PLGA)-containing gelatin/alginate/β-TCP in water, was loaded into standard Nordson cartridges and promptly employed for printing the scaffolds. Rheological characterization of various gelatin/alginate/β-TCP formulations led to an optimized paste as a printable bioink at room temperature.
Results
The in vitro release kinetics of the loaded VEGF revealed that the designed scaffolds fulfill the bioavailability of VEGF required for vascularization in the early stages of tissue regeneration. The results were confirmed by two times increment of proliferation of human umbilical vein endothelial cells (HUVECs) seeded on the scaffolds after 10 days. The compressive modulus of the scaffolds, 98 ± 11 MPa, was found to be in the range of cancellous bone suggesting their potential application for craniofacial tissue engineering. Osteoblast culture on the scaffolds showed that the construct supports cell viability, adhesion and proliferation. It was found that the ALP activity increased over 50% using VEGF-loaded scaffolds after 2 weeks of culture.
Significance
The 3D printed gelatin/alginate/β-TCP scaffold with slow releasing of VEGF can be considered as a potential candidate for regeneration of craniofacial defects.
Recommended Citation
Fahimipour, Farahnaz; Rasoulianboroujeni, Morteza; Dashtimoghadam, Erfan; Khoshroo, Kimia; Tahriri, Mohammadreza; Lobner, Doug; and Tayebi, Lobat, "3D Printed TCP-Based Scaffold Incorporating VEGF-Loaded PLGA Microspheres for Craniofacial Tissue Engineering" (2017). School of Dentistry Faculty Research and Publications. 291.
https://epublications.marquette.edu/dentistry_fac/291
Comments
Accepted version. Dental Materials, Vol. 33, No. 11 (November 2017): 1205-1216. DOI. © 2017 Elsevier B.V. Used with permission.