Document Type
Article
Language
Eng
Publication Date
2-2-2018
Publisher
Elsevier
Source Publication
Dental Materials
Source ISSN
0109-5641
Abstract
Objective
A systematic characterization of hybrid scaffolds, fabricated based on combinatorial additive manufacturing technique and freeze-drying method, is presented as a new platform for osteoblastic differentiation of dental pulp cells (DPCs).
Methods
The scaffolds were consisted of a collagenous matrix embedded in a 3D-printed beta-tricalcium phosphate (β-TCP) as the mineral phase. The developed construct design was intended to achieve mechanical robustness owing to 3D-printed β-TCP scaffold, and biologically active 3D cell culture matrix pertaining to the Collagen extracellular matrix. The β-TCP precursor formulations were investigated for their flow-ability at various temperatures, which optimized for fabrication of 3D printed scaffolds with interconnected porosity. The hybrid constructs were characterized by 3D laser scanning microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and compressive strength testing.
Results
The in vitro characterization of scaffolds revealed that the hybrid β-TCP/Collagen constructs offer superior DPCs proliferation and alkaline phosphatase (ALP) activity compared to the 3D-printed β-TCP scaffold over three weeks. Moreover, it was found that the incorporation of TCP into the Collagen matrix improves the ALP activity.
Significance
The presented results converge to suggest the developed 3D-printed β-TCP/Collagen hybrid constructs as a new platform for osteoblastic differentiation of DPCs for craniomaxillofacial bone regeneration.
Recommended Citation
Fahimipour, Farahnaz; Dashtimoghadam, Erfan; Rasoulianboroujeni, Morteza; Yazdimamaghani, Mostafa; Khoshroo, Kimia; Tahriri, Mohammadreza; Yadegari, Amir; Gonzalez, Jose; Vashaee, Daryoosh; Lobner, Douglas C.; Kashi, Tahereh S. Jafarzadeh; and Tayebi, Lobat, "Collagenous Matrix Supported by A 3D-Printed Scaffold for Osteogenic Differentiation of Dental Pulp Cells" (2018). School of Dentistry Faculty Research and Publications. 304.
https://epublications.marquette.edu/dentistry_fac/304
Comments
Accepted version. Dental Materials, Vol. 34, No. 2 (February 2, 2018): 209-220. DOI. © 2017 Published by Elsevier Ltd on behalf of The Academy of Dental Materials. Used with permission.