Document Type

Conference Proceeding

Language

eng

Publication Date

2016

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Source Publication

2016 IEEE Energy Conversion Congress and Exposition (ECCE)

Source ISSN

9781509007370

Abstract

In this paper, a numerical technique is developed for sensitivity analysis of active material cost (AMC) in PM motors with distributed and fractional slot concentrated windings. A comprehensive analysis is carried out to identify how the optimal design rules and proportions of IPM motors with sintered NdFeB magnets vary with respect to the changes in the commodity prices of permanent magnet material, copper, and steel. The sensitivities of the correlations between the design parameters and the AMC with respect to the commodity price ranges are investigated based on response surface methodology (RSM) and large-scale design optimization practice using differential evolution (DE) optimizer. An innovative application of artificial neural network (ANN)-based design optimization is introduced. Multi-objective minimization of cost and losses is pursued for an overall of 200,000 design candidates in 30 different optimization instances subjected to different cost scenarios according to a systematic design of experiments (DOE) procedure. An interesting finding is that, despite common expectations, the average mass of steel in the optimized designs is more sensitive to changes in the commodity prices than the masses of copper and rotor PMs.

Comments

Accepted version. Published as part of the proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE). DOI. © Institute of Electrical and Electronics Engineers (IEEE). Used with permission.

Share

COinS