Document Type
Article
Language
eng
Publication Date
1982
Publisher
American Institute of Physics
Source Publication
Journal of Applied Physics
Source ISSN
0021-8979
Abstract
In this paper, particular attention is paid to the impact of finite‐element approximation on uniqueness and to approximations implicit in finite element formulations from the uniqueness requirements standpoint. It is also shown that the flux density is unique without qualifications. The theoretical and numerical uniqueness of the magnetic vector potential in three‐dimensional problems is also given. This analysis is restricted to linear, isotropic media with Dirichlet Boundary conditions. As an interesting consequence of this analysis it is shown that, under usual conditions adopted in obtaining three‐dimensional finite‐element solutions, it is not necessary to specify div Ā in order that Ā be uniquely defined.
Recommended Citation
Mohammed, O. A.; Davis, W. A.; Popovic, B. D.; Nehl, T. W.; and Demerdash, Nabeel, "On the Uniqueness of Solution of Magnetostatic Vector‐potential Problems by Three‐dimensional Finite‐element Methods" (1982). Electrical and Computer Engineering Faculty Research and Publications. 429.
https://epublications.marquette.edu/electric_fac/429
ADA Accessible Version
Comments
Accepted version. Journal of Applied Physics, Vol. 53, No. 11 (November 1987): 8402-8404. DOI. © 2019 AIP Publishing LLC. Used with permission.
N.A. Demerdash was affiliated with Virginia Polytechnic Institute and State University at the time of publication.