Document Type
Article
Language
eng
Publication Date
12-2-2015
Publisher
Nature Publishing Group (Macmillan Publishers Limited)
Source Publication
Scientific Reports
Source ISSN
2045-2322
Abstract
Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III–V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Farrell, Alan C.; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, George; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M.; and Huffaker, Diana L., "Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes" (2015). Electrical and Computer Engineering Faculty Research and Publications. 533.
https://epublications.marquette.edu/electric_fac/533
ADA Accessible Version
Comments
Published version. Scientific Reports, Vol. 5, No. 17580 (December 2 2015). DOI. © 2015 Nature Publishing Group (Macmillan Publishers Limited). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Majeed M. Hayat was affiliated with University of New Mexico, Albuquerque at the time of publication.