Document Type
Article
Language
eng
Format of Original
11 p.
Publication Date
2-2011
Publisher
Institute of Electrical and Electronics Engineers
Source Publication
IEEE Transactions on Audio, Speech, and Language Processing
Source ISSN
1558-7916
Original Item ID
doi: 10.1109/TASL.2010.2047680
Abstract
The shifted delta cepstrum (SDC) is a widely used feature extraction for language recognition (LRE). With a high context width due to incorporation of multiple frames, SDC outperforms traditional delta and acceleration feature vectors. However, it also introduces correlation into the concatenated feature vector, which increases redundancy and may degrade the performance of backend classifiers. In this paper, we first propose a time-frequency cepstral (TFC) feature vector, which is obtained by performing a temporal discrete cosine transform (DCT) on the cepstrum matrix and selecting the transformed elements in a zigzag scan order. Beyond this, we increase discriminability through a heteroscedastic linear discriminant analysis (HLDA) on the full cepstrum matrix. By utilizing block diagonal matrix constraints, the large HLDA problem is then reduced to several smaller HLDA problems, creating a block diagonal HLDA (BDHLDA) algorithm which has much lower computational complexity. The BDHLDA method is finally extended to the GMM domain, using the simpler TFC features during re-estimation to provide significantly improved computation speed. Experiments on NIST 2003 and 2007 LRE evaluation corpora show that TFC is more effective than SDC, and that the GMM-based BDHLDA results in lower equal error rate (EER) and minimum average cost (Cavg) than either TFC or SDC approaches.
Recommended Citation
Zhang, Wei-Qiang; He, Liang; Deng, Yan; Liu, Jia; and Johnson, Michael T., "Time–Frequency Cepstral Features and Heteroscedastic Linear Discriminant Analysis for Language Recognition" (2011). Electrical and Computer Engineering Faculty Research and Publications. 57.
https://epublications.marquette.edu/electric_fac/57
Comments
Accepted version. IEEE Transactions on Audio, Speech, and Language Processing, Vol. 19, No. 2 (February 2011): 266-276. DOI. © 2011 Institute of Electrical and Electronics Engineers (IEEE). Used with permission.