Document Type

Article

Language

eng

Publication Date

10-2012

Publisher

Institute of Electrical and Electronic Engineers (IEEE)

Source Publication

IEEE Transactions on Geoscience and Remote Sensing

Source ISSN

0196-2892

Abstract

A vibration estimation method for synthetic aperture radar (SAR) is presented based on a novel application of the discrete fractional Fourier transform (DFRFT). Small vibrations of ground targets introduce phase modulation in the SAR returned signals. With standard preprocessing of the returned signals, followed by the application of the DFRFT, the time-varying accelerations, frequencies, and displacements associated with vibrating objects can be extracted by successively estimating the quasi-instantaneous chirp rate in the phase-modulated signal in each subaperture. The performance of the proposed method is investigated quantitatively, and the measurable vibration frequencies and displacements are determined. Simulation results show that the proposed method can successfully estimate a two-component vibration at practical signal-to-noise levels. Two airborne experiments were also conducted using the Lynx SAR system in conjunction with vibrating ground test targets. The experiments demonstrated the correct estimation of a 1-Hz vibration with an amplitude of 1.5 cm and a 5-Hz vibration with an amplitude of 1.5 mm.

Comments

Accepted version. IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 10 (October 2012): 4145-4156. DOI. This article is © 2012 Institute of Electrical and Electronic Engineers (IEEE). Used with permission.

Majeed M. Hayat was affiliated with University of New Mexico, Albuquerque at the time of publication.

Hayat_12991acc.docx (1885 kB)
ADA Accessible Version

Share

COinS