Document Type
Article
Language
eng
Publication Date
2-2006
Publisher
Institute of Electrical and Electronic Engineers (IEEE)
Source Publication
IEEE Journal of Quantum Electronics
Source ISSN
0018-9197
Abstract
A rigorous model is developed for determining single-photon quantum efficiency (SPQE) of single-photon avalanche photodiodes (SPADs) with simple or heterojunction multiplication regions. The analysis assumes nanosecond gated-mode operation of the SPADs and that band-to-band tunneling of carriers is the dominant source of dark current in the multiplication region. The model is then utilized to optimize the SPQE as a function of the applied voltage, for a given operating temperature and multiplication-region structure and material. The model can be applied to SPADs with In/sub 0.52/Al/sub 0.48/As or InP multiplication regions as well as In/sub 0.52/Al/sub 0.48/As--InP heterojunction multiplication regions for wavelengths of 1.3 and 1.55 /spl mu/m. The predictions show that the SPQE generally decreases with decreasing the multiplication-region thickness. Moreover, an InP multiplication region requires a lower breakdown electric field (and, hence, offers a higher SPQE) than that required by an In/sub 0.52/Al/sub 0.48/As layer of the same width. The model also shows that the fractional width of the In/sub 0.52/Al/sub 0.48/As layer in an In/sub 0.52/Al/sub 0.48/As--InP heterojunction multiplication region can be optimized to attain a maximum SPQE that is greater than that offered by an InP multiplication region. This effect becomes more pronounced in thin multiplication regions as a result of the increased significance of dead space.
Recommended Citation
Ramirez, David A.; Hayat, Majeed M.; Karve, Gauri; Campbell, Joe C.; Torres, Sergio N.; Saleh, Bahaa E.A.; and Teich, Malvin Carl, "Detection Efficiencies and Generalized Breakdown Probabilities for Nanosecond-Gated Near Infrared Single-Photon Avalanche Photodiodes" (2006). Electrical and Computer Engineering Faculty Research and Publications. 626.
https://epublications.marquette.edu/electric_fac/626
ADA Accessible Version
Comments
Accepted version. IEEE Journal of Quantum Electronics, Vol. 42, No. 2 (February 2006): 137-145. DOI. © 2006 Institute of Electrical and Electronic Engineers (IEEE). Used with permission.
Majeed M. Hayat was affiliated with University of New Mexico, Albuquerque at the time of publication.